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The work function of an electron gas 

D. E. G. WILLIAMS 
Department qf Physics, Loughborough University, Loughborough, LEI1 3TU, 
England 
MS received 30th June 1970 

Abstract. An investigation of the temperature variation of the work function of 
an electron gas is made by collective electron theory methods. 

In  the conventional approach to the collective electron theory (e.g. Stoner 1938) 
the Helmholtz free energy of the electron gas F is written down in terms of the Gibbs 
free energy G and the thermodynamic potential C2 (= -PV, where P and V are 
pressure and volume respectively) as 

F = G+C2. 

SZ is deduced from statistical mechanics as 

- k T J m  Vn ( E )  In [l+exp{(p-E)/kT)] dE 

where n(E) is the density of states in energy per unit volume for the electron gas and 
p is the chemical potential of the electron gas. G is taken as Np where N is the 
number of electrons in the gas, and p is measured relative to the energy of the bottom 
of the band. In  the free electron theory of metals this is a quite satisfactory zero of 
energy since the electrons move in a zero potential and the energy of the bottom of the 
band is unaltered by, for example, changes in volume of the metal. When the same 
concept of an energy zero at the bottom of the band is applied to a more realistic 
model of a solid, where the electron is moving in a potential which is periodic with the 
periodicity of the crystal lattice, it mould seem likely that the choice of energy zero at 
the bottom of the energy band is less appropriate than in the case of the free electron 
gas. The  volume of the solid and hence the periodicity of the lattice can be altered, 
for example, by altering its temperature, and there is no good reason to believe that the 
energy of the bottom of the band remains constant when the temperature of the solid 
is raised. Provided that no allotropic phase transformations occur, the symmetry of 
the crystal is not usually altered by raising its temperature and thus increasing its 
volume, so that we would not expect the shape of the band to alter appreciably as the 
temperature is raised. 

I n  order to describe the electron gas, the most appropriate model would thus seem 
to be one in which the density of states curve has a fixed shape, but whose bottom can 
‘drift’ in energy as the volume of the crystalline lattice is altered. I n  order to make the 
meaning of the Gibbs free energy more precise, we have to define a fixed zero of 
energy, and measure the Gibbs free energy from that zero rather than from the bottom 
of the band. It is obviously convenient to choose the zero of energy as that of an 
electron at rest at the surface of the solid; in this case if the energy of the bottom of the 
density of states curve relative to this zero is - W, then the Gibbs free energy of the 
electron gas may be written as 

0 

G = N ( p -  W )  
= -AT+ 
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where 4 is the work function of the electron gas. The variation with temperature of the 
work function may be written as 

d V  
d T  

and since, if the solid has constant volume, W is constant, the first term is merely 

so that 
d4  d V  
d T  
_ -  

We may write 

1 - -- 
X N  

where x is the isothermal compressibility. Hence we may write 

where U is th coefficien of volume expansion and Vo is the volume of the solid at 
OK. The  first term in equation (1) has been evaluated for a free electron gas by 
Stoner (1936), subject to the condition that ( kT /po)  < 1, as 

ir2k2 T -(.!E) =-- 
v 6 Po 

which can be estimated as of the order of eV K-l at room temperature (Williams 
and Goto 1970). 

In  order to obtain an order of magnitude estimate of the second term in equation (l), 
let us assume that, for tungsten there are six electrons per atom in the electron gas, so 
that 

N 6 x 6.023 x 

vo 9.63 
ml-1 _ -  - 

and take the room-temperature values, x N 3 x 
K-l. In  this case 

dyn cm-2 and U N 1 . 3  x 
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This term will obviously dominate equation (1) except at high temperatures, so that, 
for tungsten 

The  numerical value obtained compares quite favourably with the experimental 
values, d$/dT - 6 x  eVK-l ,  for tungsten, given by Fomenko (1966) and by 
Kruger and Stabenow (1935). A similar calculation for tantalum, assuming 5 electrons 
per atom, gives d+/dT - 9 x  eV K-l compared with Kruger and Stabenow's 
result d$/dT N 6 x  eV K-l .  For molybdenum the comparison is not so good 
since Kruger and Stabenow did not obtain a significant result, while the value 
predicted from this model is 7 x  eV K-l. 

Previous interpretations of the temperature variation of the work function (e.g. 
Seitz 1940) seem to have been directed towards obtaining a relation between experi- 
mental and theoretical values of the constant in the equation of thermionic emission, 
rather than towards obtaining an explicit expression for d+/d T. 
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